skip to main content


Search for: All records

Creators/Authors contains: "Alkhaldi, Rana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    A wide variety of two-dimensional (2D) metal dichalcogenide compounds have recently attracted much research interest due to their very high photoresponsivities (R) making them excellent candidates for optoelectronic applications. High R in 2D photoconductors is associated to trap state dynamics leading to a photogating effect, which is often manifested by a fractional power dependence (γ) of the photocurrent (I ph ) when under an effective illumination intensity (P eff ). Here we present photoconductivity studies as a function of gate voltages, over a wide temperature range (20 K to 300 K) of field-effect transistors fabricated using thin layers of mechanically exfoliated rhenium diselenide (ReSe 2 ). We obtain very high responsivities R ~ 16500 A/W and external quantum efficiency (EQE) ~ 3.2 x 10 6 % (at 140 K, V g = 60 V and P eff = 0.2 nW). A strong correlation between R and γ was established by investigating the dependence of these two quantities at various gate voltages and over a wide range of temperature. Such correlations indicate the importance of trap state mediated photogating and its role in promoting high photo responsivities in these materials. We believe such correlations can offer valuable insights for the design and development of high performance photoactive devices using 2D materials. 
    more » « less